UG/4th Sem (G)/22 (CBCS)

U.G. 4th Semester Examinations 2022

MATHEMATICS (General)

Paper Code : DC-4

(NUMERICAL METHODS & PROBABILITY THEORY)

[CBCS]

Full Marks : 32

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

- 1. Answer any *four* questions :
 - (a) If A and B are two events such that P(A) = P(B) = 1, show that P(A+B) = 1 and P(AB) = 1.
 - (b) If X is a random variable, prove that $V(aX+b) = a^2V(X)$.
 - (c) If A and B are independent events, prove that A^{C} and B^{C} are also independent.
 - (d) Find the number of significant figures in 1.0010.
 - (e) Find the percentage error in approximate representation of $\frac{4}{3}$ by 1.33.
 - (f) Find $(\nabla + \Delta)(x^2)$, where h = 1.
 - (g) When do you use Newton's forward interpolation formula in finding the functional value at a given point?

Group - B

Answer any *two* questions. $5 \times 2 = 10$

- 2. (a) Find the probability that in a game of bridge, a hand of 13 cards will contain atleast one ace.
 - (b) A coin is tossed 3 times in succession. Find the probability of exactly 2 heads. 2

[P.T.O.]

 $1 \times 4 = 4$

Time : Two Hours

(2)

- 3. State and prove Baye's theorem.
- 4. Given

1 2 3 4 5 6 7 8 : х f(x): 1 8 27 64 125 216 343 512

Find f(1.5) by using suitable interpolation formula.

5. Solve by Euler's Method, the following differential equation for x = 1 by taking h = 0.2.

$$\frac{dy}{dx} = x + y, \ y(0) = 1$$
5

Group - C

Answer any *two* questions. $9 \times 2 = 18$

6. (a) Determine the value of the constant C such that f(x) defined by

$$f(x) = \begin{cases} Cx(1-x) & \text{if } 0 < x < 1, \\ 0 & \text{elsewhere} \end{cases}$$

is a probability density function. Find the corresponding distribution function and $P\left(x > \frac{1}{3}\right)$.

(b) Let X be a random variable with the following probability distribution :

x : -3 6 9 p(X = x) : $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{3}$

Find E(X) and Var (X).

- 7. (a) A radio active source emits on the average 2.5 particles per second. Calculate the probability that 3 or more particles will be emitted in an interval of 4 seconds. 4
 - (b) Find a positive real root of $x^2 + 2x + 2 = 0$, by Newton-Raphson Method. 5

8. (a) Evaluate
$$\int_0^1 \frac{dx}{1+x}$$
 by using Simpson's $\frac{1}{3}$ rd rule with $h = 0.25$. 5

(b) Find the cubic polynomial which takes the following values :

x	0	1	2	3
f(x)	1	2	1	10

5

4

4