UG/6th Sem (G)/22 (CBCS)

Time : Two Hours

U.G. 6th Semester Examinations 2022

MATHEMATICS (General)

Paper Code : DSE - 2-A & B

[CBCS]

Full Marks : 32

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Paper Code : DSE - 2-A [REAL & COMPLEX ANALYSIS]

Group - A

(4 Marks)

- 1. Answer any *four* questions :
 - (a) Solve the equation : |z| z = 2 + i
 - (b) Define analytic function.
 - (c) Find the radius of convergence of the power series $1+3x+\frac{3^2}{\underline{12}}x^2+\frac{3^3}{\underline{13}}x^3+\dots$
 - (d) State convolution theorem for Laplaces transformation.
 - (e) Find $\mathscr{L}^{-1}\left(\frac{1}{S^2+7}\right); S > 0.$
 - (f) Define uniform convergence of a sequence of functions $\{f_n\}$ on an interval *I*.
 - (g) Write down the statement of Dirichlet's conditions of convergence.

 $1 \times 4 = 4$

(1)

(2) Group - B

```
(10 Marks)
```

Answer any *two* questions :

2. For the function f(z), defined by

$$f(z) = \begin{cases} \frac{\left(\overline{z}\right)^2}{z}, \ z \neq 0\\ 0, \ z = 0 \end{cases}$$

Show that the *C*–*R* equations are satisfied at (0, 0) but the function is not differentiable at 0 + 0i.

- 3. Find the Fourier series consisting of sine terms only, which represents the periodic function f(x) = x in $0 \le x \le \pi$.
- 4. For each natural number *n*, let $f_n(x) = \frac{x}{1+nx^2}$, $x \in [0,1]$, show that the sequence of function $\{t_n\}_n$ converge uniformly on [0, 1].
- 5. Use Laplace transform to solve the initial value problem.

$$y'' + 3y' + 2y = e^{-t}, y(0) = y'(0) = 0$$
 5

Group - C

(18 Marks)

Answer any *two* questions :

- 6. (a) Show that the sequence $\{f_n\}$, where $f_n(x) = \tan^{-1} n x$, $x \ge 0$ is uniformly convergent in any interval [a, b], a > 0, but is only point-wise convergent in [0, b]. 7
 - (b) Show that the function $u(x, y) = 2x x^3 + 3xy^2$ is a harmonic function. 2
- 7. (a) Prove that the function f(z) = |z| is no where differentiable in C but continuous everywhere. 7

(b) Find the set of points for which the function $f(z) = \frac{z-1}{z^2+1}$ is not analytic. 2

[P.T.O.]

9×2=18

5×2=10

- (3)
- 8. (a) Obtain the Fourier series in $[-\pi, \pi]$ for the function $f(x) = x \sin x$. $-\pi \le x \le \pi$. 7
 - (b) Find the Laplace transform, if it exists for the function $f(t) = e^{at}$. 2

Paper Code : DSE - 2 (2) [LINEAR PROGRAMMING PROBLEM & GAME THEORY]

Group - A

(4 Marks)

1. Answer any *four* questions :

- (a) Show that the set $X = \{x : |x| \le 2\}$ is a Convex set.
- (b) A hyperplane is given by $x_1 + 2x_2 + 5x_3 + 2x_4 = 2$. Find in which half spaces the point (1, 2, -3, 1) lies.
- (c) Write down the dual of the following Problems :

Maximize $Z = 4x_1 + 2x_2$

Subject to $3x_1 + 4x_2 \le 7$

$$7x_1 - 2x_2 \le 13, x_1 \ge 0, x_2 \ge 0$$

- (d) What is the convex hull of the set $S = \{(x, y) : x^2 + y^2 = 4\}$.
- (e) Find out the extreme points of the following convex set :

$$S = \{(x, y) \mid x^2 + y^2 \le 25\}$$

- (f) Define basic feasible solution.
- (g) Solve the game Problem and determine the value of the game

 $1 \times 4 = 4$

(10 Marks)

Answer any *two* questions :

2. Solve graphically the L.P.P.

Minimize
$$Z = 2x_1 + 3x_2$$

Subject to
$$2x_1 + 7x_2 \ge 22$$
$$x_1 + x_2 \ge 6$$
$$5x_1 + x_2 \ge 10, \quad x_1, x_2 \ge 0$$

3. Find out an initial B.F.S. of the following balanced T.P using row minima method

	D ₁	D_2	D_3	D_4	a _i	
O ₁	4	2	5	3	6	
O_2	5	4	3	2	13	Capasity
O ₃	1	4	6	5	9	
b _j	7	8	5	8		
		Den	nand			

4. Prove that $x_1 = 2$, $x_2 = 1$ and $x_3 = 3$ is a feasible solution of the set of equations

$$4x_1 + 2x_2 - 3x_3 = 1$$
$$-6x_1 - 4x_2 + 5x_3 = -1$$

Reduce the feasible solution to a basic feasible solution by reduction theory.

5. Solve the following game problem graphically :

$$\begin{bmatrix} 1 & 2 & -3 & 7 \\ 2 & 5 & 4 & -6 \end{bmatrix}$$

[P.T.O.]

5

 $5 \times 2 = 10$

5

5

(5) Group - C

(18 Marks)

Answer any *two* questions :

6. (a) Find the optimal assignments to find the minimum cost for the assignment problem with the cost matrices :

	Ι	II	III	IV	V
Α	6	5	8	11	16
В	1	13	16	1	10
С	16	11	8	8	8
D	9	14	12	10	16
Е	10	13	11	8	16

(b) How many basic solutions are there in the following set of equations. Find all the basic solutions of the system of equations :

$$x_1 + x_2 + 2x_3 = 9$$

$$3x_1 + 2x_2 + 5x_3 = 22$$

3

- 7. (a) Rewrite the L.P.P. in standard maximization form by supplying slack and surplus variables
 - Minimize $Z = 3x_1 2x_2 + 4x_3$ Subject to $x_1 - x_2 + 3x_3 \ge 1$ $2x_1 + 3x_2 - 5x_3 \ge -3$ $4x_1 + 2x_2 \ge 2, x_1, x_2, x_3 \ge 0$

State which are the slack and surplus variable.

- (b) Use duality to solve the L.P.P.
 - Minimize $Z = 3x_1 + x_2$ Subject $2x_1 + 3x_2 \ge 2$ $x_1 + x_2 \ge 1, \quad x_1, x_2 \ge 0$
 - [P.T.O.]

9×2=18

3

6

(6)

8. (a) Solve the following game stating the optimal strategies and the saddle points :

2	3	2	4	6
0	-2	1	2	1
-1	3	0	-1	3
4	5	-1	2	1
3	2	-2	1	-2

(b) Solve the following L.P.P. by Big M-method :

Minimize
$$Z = 2x_1 + 9x_2 + x_3$$

Subject to $x_1 + 4x_2 + 2x_3 \ge 5$
 $3x_1 + x_2 + 2x_3 \ge 4$
and $x_1, x_2, x_3 \ge 0$ 4

5