UG/4th Sem (H) / 22 (CBCS) U.G. 4th Semester Examination 2022 PHYSICS (Honours)

Paper Code : DC - 10

(Analog Systems and Application)

Full Marks : 25

Time : Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any *five* questions :
 - (a) What is meant by Zener breakdown?
 - (b) What are the fundamental differences among Class A, Class B and Class C amplifiers ?
 - (c) How are the input and output resistances modified in voltage shunt feedback?
 - (d) An *n*-channel JFET has $I_{DSS} = 12 \text{ mA}$ and 'pinch off' voltage $V_p = -4V$. Find the drain current for $V_{GS} = -2V$.
 - (e) Write the differences in characteristics of an ideal OP-AMP and real OP-AMP.
 - (f) A ramp voltage of 1.5 V/ms is applied to an OP-AMP differentiator with $R = 2k\Omega$ and $C = 0.01 \,\mu F$. Find the output voltage and the waveform.
 - (g) What is solar cell ? Sketch its characteristic curve.
- 2. Answer any *three* questions :
 - (a) What is mobility ? Establish a relation between conductivity and mobility in an extrinsic semiconductor containing both electrons and holes. 2+3
 - (b) (i) Show (in connection with D/A converters) a four stage R 2R ladder network using $15 k\Omega$ and $30 k\Omega$ resistors.
 - (ii) For a reference voltage of 16 V, calculate the output voltage for input state of 1010.
 - (iii) What voltage resolution is possible using the above network ? 2+2+1

[P.T.O.]

 $5 \times 3 = 15$

 $2 \times 5 = 10$

- (c) (i) Deduce the expression for the voltage gain and phase difference for a lead-lag network. Show that the output is in the same phase with the input at resonance.
 - (ii) Calculate the resistance required to get resonance at 1 kHz with $c = 0.1 \,\mu F$ in a lead-lag network. 3+2
- (d) Draw the circuit diagram for an emitter follower and its *h*-parameter equivalent circuit for small signals. Find the input impedance and voltage gain. 1+2+2
- (e) Find the voltage gain of the amplifier shown below, where two transistors are identical.

 $h_{ie} = 1 k\Omega$, $h_{re} = 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 10^{-4} \frac{A}{V}$.