U. G. 6th Semester Examination 2022 CHEMISTRY (Honours)

Paper Code : CEMH DSE-3

[CBCS]

Full Marks : 25

Time : Two Hours

 $1 \times 5 = 5$

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Instrumental Methods of Chemical Analysis

- 1. Answer any *five* questions from the following :
 - (a) Which of the following statements is true concerning infrared spectroscopy?
 - (i) IR spectroscopy is useful in determining the size and shape of a compound's carbon skeleton
 - (ii) An IR spectrometer shines infrared light on a compound and records the positions where the light is blocked by the compound. This results in the spectrum's peaks
 - (iii) When the infrared light frequency matches the frequency of bond vibration in a molecule, a peak is recorded on the spectrum
 - (iv) None of the above
 - (b) What is the absorbance of an IR peak with a 25% transmittance?
 - (i) 2.50
 - (ii) 0.81
 - (iii) 0.60
 - (iv) 0.33
 - (c) ¹H and ¹³C are two of the most common nuclides studied by high-field NMR spectroscopy due to their abundance in human tissues. Other isotopes that have been studied include ¹⁴N, ¹⁷O, ³¹P, ⁷⁹Br, ¹²⁷I. Based on this information, which of the following nuclides will NOT be considered suitable for use with NMR spectroscopy?
 - (i) ${}^{2}H$
 - (ii) ¹⁹F
 - (iii) ²⁰Ne
 - (iv) ³⁵Cl

[P.T.O.]

- (2)
- (d) Helium, rather than nitrogen, is used as carrier gas in GC with TCD detector because
 - (i) Being lighter than nitrogen, helium elutes the sample components more rapidly
 - (ii) Helium is less expensive than nitrogen
 - (iii) Nitrogen has stable isotopes which separate and cause anomalous column behaviour
 - (iv) Helium has much higher thermal conductivity than nitrogen.
- (e) A copper(II) sulfate solution of unknown concentration is placed in a colorimeter and an absorbance reading of 0.46 is recorded. Using the same solution cell, a 0.055 M solution of copper(II) sulfate gives an absorbance reading of 0.34. What is the concentration of the first solution?
 - (i) 0 8.60 × 10⁻³ mol dm⁻³
 - (ii) $0.35 \text{ mol } dm^{-3}$
 - (iii) $0.074 \text{ mol } dm^{-3}$
 - (iv) $0.047 \text{ mol } dm^{-3}$
- (f) The value of diffusion current at its limiting value using a dropping mercury electrode can be calculated from
 - (i) Beer-Lambert law
 - (ii) Ilkovic equation
 - (iii) Least square method
 - (iv) Paneth-Fajans-Hahn law
- (g) Which of the following gases is used as carrier gas in gas chromatography?
 - (i) CO
 - (ii) CH₄
 - (iii) He
 - (iv) SO₂
- (h) The sin2θ values obtained from X-ray powder diffraction pattern of a solid are 2x, 4x, 6x, 8x where x is equal to 0.06. The wavelength of X-ray used to obtain this pattern is 1.54 Å. The unit cell and the unit cell length, respectively are
 - (i) BCC, 3.146 Å
 - (ii) FCC, 3.146 Å
 - (iii) SCC, 6.281 Å
 - (iv) BCC, 1.544 Å

(3)

- 2. Answer any *four* questions:
 - (a) What are the differences between XPES and AES?
 - (b) How many fundamental vibration frequencies would be observed on the IR absorption spectrum of H₂O? Justify your answer.
 - (c) Explain why electrothermal atomizers result in greatly enhanced sensitivity compared to flame atomizers in atomic absorption spectrometry.
 - (d) Why does a deuterium lamp produce a continuum rather than a line spectrum in the UV?
 - (e) What are the common solvents used in NMR spectroscopy? Why is TMS is used as internal reference in NMR spectroscopy?
 - (f) What do you mean by hyphenated or coupled chromatographic technique? Give two example.
 - (g) An analyst notes that a 1-ppm solution of sodium gives a flame emission signal of 110, while the same solution containing also 20-ppm potassium gives a reading of 125. It was determined that a 20-ppm solution of potassium exhibited no blank reading at the sodium emission wavelength. Explain the results.
 - (h) What is the short-wavelength limit of the continuum produced by an X-ray tube having a tungsten target and operated at 50 kV?
- 3. Answer any *two* questions :
- (a) (i) What are the sources of noise in a spectrophotometer and how would you distinguish between signal and noise?
 - (ii) Calculate the relative number of protons in the higher and lower magnetic states when a sample is placed in a 4.69 T field at 20°C. (Gyromagnetic ratio= 2.6752×10^8 radian T⁻¹ s⁻¹)
 - (iii) How will you distinguish alkanes, alkenes, alkynes using IR spectroscopy?

2+2+2

 $2 \times 6 = 12$

- (b) (i) For each of the following compounds, calculate the number of multiplets for each band and their relative areas:Cl(CH₂)₃Cl; (b) CH₃CHBrCH₃; (c) CH₃CH₂OCH₃.
 - (ii) What are the criteria of selection of exact adsorbent in column chromatography?
 - (iii) Why is a calibration curve likely to be linear over a wider range of concentrations at the wavelength of maximum absorption compared to a wavelength on a shoulder of the absorption curve? 3+2+1
- (c) (i) Consider the following three compounds: benzene, acetone, and benzoic acid. What is the order of elution of these compounds using water as the eluting solvent for C-18 reverse phase column chromatography? Justify your answer.

- (ii) What do you mean by fundamental vibration and overtones in IR-spectroscopy?
- (iii) Write down the principle of atomic absorption spectroscopy (AAS) with schematic diagram.
- (d) (i) Describe the principles of the following gas chromatography detectors:

(a) thermal conductivity, (b) flame ionization, (c) electron capture.

- (ii) Methanol and ethanol are separated in a capillary GC column with retention times of 370 and 385 s, respectively, and half widths $(w_{1/2})$ of 9.42 and 10.0 s. An unretained butane peak occurs at 10.0 s. Calculate the separation factor and the resolution.
- (iii) What do you mean by the term overpotential?

3+2+1

Inorganic Materials of Industrial Importance

1. Answer any *five* questions from the following:

 $1 \times 5 = 5$

- (a) In the manufacture of glass, the addition of chromium oxide gives:
 - (i) Pink colour
 - (ii) Orange colour
 - (iii) Green colour
 - (iv) Red colour
- (b) Mortor could be preparing with mixing of:
 - (i) Portland cement + Water
 - (ii) Portland cement + Sand + Water
 - (iii) Sand+ Water
 - (iv) None of these above
- (c) Which is used as red pigment?
 - (i) Chromium oxide
 - (ii) Zinc oxide
 - (iii) Titanium dioxide
 - (iv) Lead tetroxide

(5)

- (d) Another name of RDX is _____?
 - (i) Cyanohydrin
 - (ii) Dextran
 - (iii) Cyclohexane
 - (iv) Cyclonite
- (e) Buckminster fullerene is:
 - (i) C90
 - (ii) Graphite
 - (iii) C60
 - (iv) C30
- (f) Which among the following is not a nitrogenous fertilizer?
 - (i) Superphosphate of lime
 - (ii) Urea
 - (iii) Ammonium sulphate
 - (iv) Calcium cyanamide
- (g) Which of the following can be used as a floating agent during preparation of enamel?
 - (i) Copper oxide
 - (ii) Soda ash
 - iii) Borax
 - (iv) Clay gum
- (h) Bronze is an alloy of
 - (i) Cu & Zn
 - (ii) Cu & Sn
 - (iii) Cu & Au
 - (iv) Cu & Ag
- 2. Answer any *four* questions from the following:
 - (a) Outline the compositions of borosilicate glass and state how it is different from a sodalime glass.
 - (b) Illustrate with chemical equations (non-stoichiometric) how you can prepare superphosphate and triple-superphosphate fertilizers from phosphate rock.
 - (c) Name the different type of dryers used in drying clay wares.
 - (d) What is photosensitive glass? Mention at least one usage of photosensitive glass.
 - (e) What is vitrification of glass?

[P.T.O.]

 $2 \times 4 = 8$

- (6)
- (f) Write the composition of Portland cement.
- (g) What is primary battery?
- (h) Explain the role of thinners and fillers in paint. Name some commonly used thinners and fillers.
- 3. Answer any *two* questions from the following : $2 \times 6 = 12$
 - (a) (i) How does 'Hydrogen-Oxygen Fuel Cells' work? Write down the advantages of fuel cells.
 - (ii) Discuss the spraying method of metal coating.
 - (iii) Classify different types of waxes based upon their sources. 3+2+1
 - (b) (i) How PETN (Penta erythritol tetranitrate) is prepared? Write down the important properties of PETN.
 - (ii) What are non-ferrous alloys? Explain the properties and applications of the common nonferrous alloys.
 - (iii) Give one examples of heterogeneous catalysis in industrial process. $2\frac{1}{2}+2\frac{1}{2}+1$
 - (c) (i) Describes the manufacturing process and action of ammonium nitrate as a fertilizer.
 (ii) What are Zeolites? Give two examples. 4+2
 - (d) (i) What is paint? What properties of paint make it ideal paint?
 - (ii) hat are the differences between water and oil based paints?
 - (iii) How can you prepare Lead azide explosive? 2+2+2