2022

COMPUTER SCIENCE (Honours) Paper Code : DC-8

[Theory of Computation]

(CBCS)

Full Marks: 32

Time: Two hours

The figures in the margin indicate full marks. Candidates are required to give their answers with their own words as far as practicable.

Group-A

Answer any *six* questions from question no.1. Each question carries two marks.

2×6=12

- 1. (a) Find the regular expressions for the set of all strings over {a, b} with three consecutive b's.
 - (b) Design a DFA that accepts all the strings that ends with aa, where $\sum = \{a, b\}$.
 - (c) Find the highest type number which can be applied to the following productions as per Chomsky classification $-S \rightarrow aSb$, $S \rightarrow a$.
 - (d) Explain Turing machine with example.
 - (e) Differentiate between Mealy and Moore machine.
 - (f) Is it possible to design a finite automata that accepts the language $L=\{a^nb^n \mid n\geq 1\}$? Justify.
 - (g) What is derivation tree?

Group-B

Answer any *two* questions.
$$10 \times 2=20$$

- 2. (a) Construct a regular grammar for the regular expression $(a+b)^*$ abb.
 - (b) Construct the regular expression corresponding to the following finite automata.

- 3. (a) Construct a Turing Machine to accept the set of all strings over {0, 1} ending with 011.
 - (b) Differentiate between deterministic and non-deterministic finite automata. 5+5
- 4. (a) Find the language generated by the following grammar : $S \rightarrow 0S1 \mid 0A1, A \rightarrow 1A \mid 1.$
 - (b) Construct the grammar that accepts the following language : $L = \{ 0^{n}1^{2n} \mid n \ge 1 \}.$ 5+5