UG 3rd Semester Examination 2021

PHYSICS (Honours)

Paper : DC - 6

[CBCS]

Full Marks : 25

Time : Two Hours

 $2 \times 5 = 10$

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any *five* questions :
- (a) Calculate the molecular diameter of nitrogen molecule if its number density $n=2.7\times10^{25}$ per m³ and the mean free path $\lambda=8\times10^{-8}$ m.
- (b) 1 kg of ice at $0^{\circ}C$ is melted and converted to water at constant temperature. Compute its change in entropy, assuming that melting is done reversibly. The heat of fusion of water is 3.34×10^5 J/kg.
- (c) Prove that in a *T*-S diagram the slope of isochoric curve is T/C_V , terms being usual.
- (d) Show that at critical point of a van der Waals' gas, the laws have a departure of 62.5% from those of perfect gas.

(e) If
$$f(P, V, T) = 0$$
, prove that $\left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P \left(\frac{\partial T}{\partial P}\right)_V = -1$.

(f) Using Maxwell's relations prove that $\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 P}{\partial T^2}\right)_V$.

- (g) Obtain the Joule-Thomson coefficient for an ideal gas.
- (h) State the differences between first order and second order phase transitions.

- 2. Answer any *three* questions :
- (a) For a group of particles,

n _i	$v_i ({ m m/s})$
2	1.0
4	2.0
8	3.0
6	4.0
3	5.0

where, n_i is the number of particles with speed v_i .

- [i] Compute the average speed.
- [ii] Compute the r.m.s. speed
- [iii] Find out the most probable speed.
- (b) [i] For an ideal gas, if E_T and E_S denote respectively the isothermal and the adiabatic moduli of elasticity, prove that $E_S/E_T = \gamma$, where γ is the ratio of molar specific heats of the gas.
 - [ii] Show that for a hydrostatic system

$$\frac{dV}{V} = \beta_P dT - \frac{1}{\beta_T} dT$$

where β_P is the coefficient of volume expansion at constant pressure and β_T is the isothermal bulk modulus. 3+2=5

- (c) [i] Prove that, working between the same two heat reservoirs, no engine can be more efficient than a Carnot engine.
 - [ii] Explain the concept of entropy in terms of disorder.

3+2=5

(d) [i] Prove that for a system undergoing isothermal isochoric transformation, the Helmholtz free energy remains constant.

[ii] If *G* represents the Gibbs' free energy of the system, show that $C_P = -T \left(\frac{\partial^2 G}{\partial T^2}\right)_P$, terms being usual.

2+3=5

2+2+1=5

(e) [i] What is inversion temperature? Show that the expression for inversion temperature for a van der Waals' gas is $T_i = \frac{2a}{Rb}$.

[ii] Naphthalene melts at 80°*C*. The increase in specific volume is 0.146 cc. Assuming L=35.6 cal/gm, find the change in melting point per atmosphere pressure change. (1+2)+2=5
