KALIACHAK COLLEGE
 2021
 MATHEMATICS (General)

 Paper Code: I-A

 Paper Code: I-A
 [New Syllabus]

Notations and symbols have their usual meanings.
Choose the correct answer.
Each question carries 2 marks

1. If ω be an imaginary cube root of unity, then the value of $\left(1-\omega+\omega^{2}\right)\left(1+\omega-\omega^{2}\right)$ is
A. 1
B. 2
C. 3
D. 4
2. The remainder when $3 x^{2}+4 x-11$ is divided by $(x-1)$ is
A. -4
B. -6
C. -8
D. -10
3. If $A=\{1,2,3\}$ and $B=\{2,3,4\}$, then $(A \times B)-(B \times A)$ is
A. $\{(1,2),(1,3),(1,4),(2,4),(3,4)\}$
B. $\{(1,2),(1,3),(1,4),(2,3),(3,4)\}$
C. $\{(1,2),(1,3),(1,4),(2,4),(4,3)\}$
D. $\{(1,2),(1,3),(1,4),(4,2),(3,4)\}$
4. If A is a non-singular symmetric matrix, then A^{-1} is
A. orthogonal
B. symmetric
C. skew-symmetric
D. none of the above
5. The vectors whose position vectors are $\mathbf{a}, \mathbf{b}, \mathbf{3 a}-\mathbf{2 b}$ are
A. collinear
B. non-collinear
C. independent
D. none of the above
6. The vectors $2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+6 \hat{k}$ are
A. perpendicular
B. non-perpendicular
C. parallel
D. non-parallel
7. The vectors $4 \hat{i}+3 \hat{j}-\hat{k}, 2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{i}-4 \hat{k}$ are
A. linearly dependent
B. linearly independent
C. mutually perpendicular
D. none of the above
8. The triangle $A B C$ whose vertices are $A(2 \vec{i}-\vec{j}+\vec{k}), B(\vec{i}-3 \vec{j}-5 \vec{k}), C(3 \vec{i}-4 \vec{j}-4 \vec{k})$ is
A. isosceles
B. equilateral
C. right-angled
D. none of the above
9. The series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is
A. convergent
B. divergent
C. absolutely convergent
D. none of the above
10. Value of $\lim _{x \rightarrow 0} \sqrt{x} \sin \frac{1}{x^{2}}$ is
A. 0
B. 1
C. 2
D. 3
11. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0, & \text { if } x \in \mathbb{Q} \\ 1, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

A. is continuous everywhere on \mathbb{R}
B. is continuous at $x=0,1$
C. is discontinuous everywhere on \mathbb{R}
D. none of the above
12. The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
A. has value 0
B. has value 1
C. has value 2
D. does not exist
13. $\lim _{x \rightarrow 0+}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$ is
A. 0
B. 1
C. -1
D. 2
14. Angle between the pair of straight lines $4 x^{2}-24 x y+11 y^{2}=0$ is
A. $\tan ^{-1}\left(\frac{3}{4}\right)$
B. $\tan ^{-1}\left(\frac{4}{5}\right)$
C. $\tan ^{-1}\left(\frac{4}{3}\right)$
D. $\tan ^{-1}\left(\frac{5}{4}\right)$
15. Angle between the planes $2 x-y+3 z+7=0$ and $x-2 y-3 z+8=0$ is
A. $\cos ^{-1}\left(\frac{5}{12}\right)$
B. $\cos ^{-1}\left(\frac{5}{14}\right)$
C. $\cos ^{-1}\left(-\frac{5}{14}\right)$
D. none of the above
16. Perpendicular distance of the plane $x+2 y-2 z=9$ from the point $(2,3,-5)$ is
A. 2
B. 4
C. 1
D. 3
17. The straight lines

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text { and } \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}
$$

are
A. non-coplanar
B. coplanar
C. orthogonal
D. none of the above
18. The mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\cos x$ is
A. injective
B. surjective
C. neither injective nor surjective
D. bijective
19. Which of the following is a subspace of \mathbb{R}^{3} over \mathbb{R} ?
A. $S=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+y+3 z=0\right\}$
B. $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x-2 y-z=2\right\}$
C. $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1\right\}$
D. $S=\left\{(x, y, z) \in \mathbb{R}^{3}: 3 y+z+1=0\right\}$
20. The value of k for which the set of vectors

$$
S=\{(k, k, 1),(k, 1, k),(1, k, k)\}
$$

is linearly independent
A. $1, \frac{1}{2}$
B. $-1, \frac{1}{2}$
C. $-1,-\frac{1}{2}$
D. $1,-\frac{1}{2}$
21. Which of the following is not a field
A. $(\mathbb{Z},+,$.
B. $(\mathbb{Q},+,$.
C. $\left(\mathbb{Z}_{5},+,.\right)$
D. $(\mathbb{R},+,$.
22. Characteristic of the ring $\left(\mathbb{Z}_{3},+,.\right)$ is
A. 0
B. 1
C. 2
D. 3
23. Order of the alternating group A_{5} is
A. 5
B. 60
C. 120
D. none of these
24. Number of generators of the group $(\mathbb{Z},+)$ is
A. 1
B. 2
C. 3
D. 4
25. For $z=-1+i$, value of $\arg z$ is
A. $\frac{\pi}{4}$
B. $\frac{2 \pi}{4}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{4}$

KALIACHAK COLLEGE

2021

MATHEMATICS (General)

Paper Code: I-B

[New Syllabus]
Full Marks: 100
Time: Three Hours
The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group-A
 (15 Marks)

Answer any three questions

1. If x and y be complex, then prove, from the definitions of sine and cosine of complex numbers, that

$$
\cos x-\cos y=2 \sin \frac{1}{2}(y+x) \sin \frac{1}{2}(y-x)
$$

2. Show that

$$
\left|\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
b^{2} & a^{2} & 2 a b \\
2 a b & b^{2} & a^{2}
\end{array}\right|
$$

is a perfect square.
3. Let A be a square matrix. Prove that $A+A^{T}$ is symmetric and $A-A^{T}$ is skewsymmetric.
4. If $x^{3}+3 p x+q$ has a factor of the form $(x-\alpha)^{2}$, then prove that $q^{2}+4 p^{3}=0$.
5. If $\alpha, \beta, \gamma, \delta$ be the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$, then find the value of $\sum \alpha^{2} \beta \gamma$.

Group-B
 (15 Marks)

Answer any three questions.
6. Let $f: A \rightarrow B$ be a bijective mapping. Prove that the mapping $f^{-1}: B \rightarrow A$ is also a bijection and $\left(f^{-1}\right)^{-1}=f$.
7. In a group $(G, *)$, prove that $(a * b)^{-1}=b^{-1} * a^{-1}$, for all $a, b \in G$.
8. Prove that if U and W be subspaces of a vector space V over a field F, then the union $U \cup W$ is a subspace of V if either $U \subseteq W$ or $W \subseteq U$.
9. Let V be a real vector space with $\{\alpha, \beta, \gamma\}$ as a basis. Prove that the set $\{\alpha+\beta+$ $\gamma, \beta+\gamma, \gamma\}$ is also a basis of V.
10. Consider the set of all matrices of the form

$$
\left(\begin{array}{cc}
a & b \\
2 b & a
\end{array}\right)
$$

where $a, b \in \mathbb{R}$. Examine if the set forms a field under the matrix addition and multiplication.
is a field.

Group-C
 (10 Marks)
 Answer any two questions.

11. Express b as a sum of two vectors such that one part is parallel to a and the other part is perpendicular to a.
12. By vector method, prove that diagonals of a rhombus bisect each other at right angle.
13. Forces $\vec{F}_{1}=2 \hat{i}+\hat{j}-\hat{k}, \vec{F}_{2}=3 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{F}_{3}=\hat{i}-\hat{j}+\hat{k}$ act on a particle at a point A. Find the work done by these forces when the particle is displaced from the position A to B where $4 \hat{i}+\hat{j}-3 \hat{k}$ and $6 \hat{i}+5 \hat{j}-6 \hat{k}$ are the position vectors of A and B respectively relative to some fixed point O as origin.
14. Find the vector equation of the plane through the points $(3,2,1),(2,4,7)$ and perpendicular to the plane $3 x+4 y+2 z=35$.

Group-D
 (25 Marks)

Answer any five questions.

15. Reduce the following equation to the canonical form and state the type of the conic:

$$
8 x^{2}+12 x y+13 y^{2}=884
$$

16. Show that the line $\frac{l}{r}=A \cos \theta+B \sin \theta$ touches the circle $r=2 a \cos \theta$, if

$$
a^{2} B^{2}+2 A \alpha l=l^{2}
$$

17. $a x+b y+c=0$ bisects an angle between a pair of straight lines of which one is $l x+m y+n=0$. Show that the other line of the pair is

$$
\left(a^{2}+b^{2}\right)(l x+m y+n)-2(a l+b m)(a x+b y+c)=0
$$

18. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two lines equidistant from the origin, show that $f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)$.
19. Find the equation of the cone whose vertex is $(1,1,3)$ and guiding curve is

$$
4 x^{2}+y^{2}=1, z=4
$$

20. Find the image of the point $(-3,5,2)$ in the plane $2 x-y+z=0$.
21. A sphere of radius $2 d$ passes through the origin and meets the co-ordinate axes at A, B, C. Show that the locus of the centroid of the tetrahedron with vertices at A, B, C and the origin is $x^{2}+y^{2}+z^{2}=d^{2}$.

Group-E
 (35 Marks)

Answer any seven questions.
22. Prove that the sequence $\left\{u_{n}\right\}$ defined by

$$
u_{1}=\sqrt{3} \text { and } u_{n+1}=\sqrt{3 u_{n}}, \text { for } n \geq 1
$$

converges to 3 .
23 . Test the convergence of the series

$$
1+\frac{1}{1!}+\frac{2^{2}}{2!}+\frac{3^{3}}{3!}+\ldots
$$

24. Discuss the continuity of the function

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

at $x=0$.
25. Evaluate $\lim _{x \rightarrow 0}\left(\frac{\operatorname{sinx}}{x}\right)^{\frac{1}{x}}$.
26. Find the envelope of the family of straight lines $\frac{x}{a}+\frac{y}{b}=1$, where the parameters a, b are connected by $a b=c^{2}$.
27. Find the radius of curvature at any point of the curve

$$
r=a(1-\cos \theta) .
$$

28. Find the pedal equation of the curve

$$
x=a e^{\theta}(\sin \theta-\cos \theta), y=a e^{\theta}(\sin \theta+\cos \theta) .
$$

29. If $V=\cos ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then verify that $\cos V=\frac{x+y}{\sqrt{x}+\sqrt{y}}$ is a homogeneous function of x, y of degree $\frac{1}{2}$. Hence prove that

$$
x \frac{\partial V}{\partial x}+y \frac{\partial V}{\partial y}+\frac{1}{2} \cot V=0 .
$$

30. Find the asymptotes of the curve:

$$
2 x^{3}+3 x^{2} y-3 x y^{2}-2 y^{3}+3 x^{2}-3 y^{2}+y-3=0 .
$$

31. Find the maximum value of $f(x, y, z)=x^{2} y^{2} z^{2}$ subject to the condition

$$
x^{2}+y^{2}+z^{2}=c^{2} .
$$

